YOUR CURRENT POSITION: Home > products > Cutout Fuse&Surge Arrestor
Power Cutout Fuses Outdoor Distribution

Power Cutout Fuses Outdoor Distribution

Overview Power Fuses are especially suited for protecting transformers, capacitor banks, and cables in outdoor distribution substations through 34.5 kV. They in
Overview
Power Fuses are especially suited for protecting transformers, capacitor banks, and cables in outdoor distribution substations through 34.5 kV. They incorporate precision-engineered nondamageable silver or nickel-chrome fusible elements with time-current characteristics that are precise and permanently accurate — assuring not only dependable performance, but also continued reliability of system coordination plans.
With Power Fuses, source-side devices may be set for faster operation than practical with other power fuses or circuit breakers, thereby providing better system protection without compromising coordination.
Features:
UNI-20 Power Fuses, rated 200 amperes continuous, utilize UNI-20 Fuse Units. These fuse units are offered in a variety of ampere ratings, in five different speeds fuse link type “K,” Standard, Slow, Very Slow, and “DR.” They provide interrupting ratings of up to 14,000 amperes symmetrical at 60 Hz.
UNI-40 Power Fuses, rated 400 amperes continuous, utilize UNI-40 Fuse Units. These fuse units are similarly offered in a variety of ampere ratings, in four different speeds — fuse link type “K”, Standard, Slow, and Very Slow. They provide interrupting ratings of up to 25,000 amperes symmetrical at 60 Hz.
This broad selection of ampere ratings and speeds permits close fusing to achieve maximum protection and optimum coordination. UNI-20 and UNI-40 Power Fuses are manufactured in accordance with a quality system certified to ISO9001:2000.
Fault interruption:
Fast, positive fault interruption is achieved in UNI-20 and UNI-40 Fuse Units through high-speed elongation of the arc in the solid-material-lined bore, and by the efficient deionizing action of gases generated through thermal reaction of the solid material due to the heat of the confined arc. The resultant high rate of dielectric recovery voltage more than matches the transient recovery voltage severity of the circuit.
Here’s How it Works
Overcurrent melts the fusible element, shown below. The strain wire severs, initiating arcing.
Released force of the drive spring accelerates the arcing rod upward, causing rapid elongation of the arc in the solid-material-lined bore.Under maximum fault conditions, heat from the confined arc causes solid material in the large-diameter lower section of the arc-extinguishing chamber to undergo thermal reaction, generating turbulent gases and effectively enlarging the bore diameter so that the arc energy is released with a mild exhaust. Under low-to-moderate fault conditions, the arc is extinguished in the small-diameter upper section of the arc-extinguishing chamber, where deionizing gases are effectively concentrated for efficient arc extinction.
Continued upward travel of the arcing rod after arc extinction causes the actuating pin to penetrate the upper seal, initiating positive dropout of the fuse unit.
Fuse Units Fusible Element
Cutout Fuse Units feature silver or pretensioned nickel-chrome current-responsive elements that are drawn through precision dies to very accurate diameters. They’re of solderless construction, brazed into their terminals. Melting time-current characteristics are precise, with only 10% total tolerance in melting current, compared to the 20% tolerance of many fuses.
These design and construction features assure that Cutout Fuse Units conform to their time-current characteristics on a sustained basis. Cutout Fuse Units are corrosion-resistant and nondamageable. Age, vibration, and surges that heat the element nearly to the severing point won’t affect their characteristics.
The nondamageability of  Cutout Fuse Units provides these important advantages:
Superior transformer protection. You can fuse close to the transformer full-load current and thus protect against a broad range of secondary-side faults.
Parameter
Rated(KV) Rated current(A) Rated interrupting current(KA) Lighting impulse withstand voltage to ground(BIL KV) Minimum powerfrequency withstand dry voltage to ground(KV) Minimum creepage distance(mm)
11-15 100/200 12 110 42 220
11-15 100/200 12 125 50 320
24-27 100/200 12 150 65 470
33-38 100/200 8 170 70 660
33-38 100/200 8 170 70 720
33-38 100/200 8 170 70 900

Contact Us, Now.
24-hour service hotline
Contact online customer service
Add: Technology Building, Tongbai Road, Zhongyuan District, Zhengzhou, Henan, China.
Related products
Pre-insulated Aluminum-copper lugs
Pre-insulated Aluminum-copper lugs
PVC Earthing Inspection Pit
PVC Earthing Inspection Pit
Bare Copper Earthing Tapes
earthing copper strip
Copper Bonded Earth Rod(Threaded)
Copper Bonded Earth Rod(Threaded)
Related cases
Tinned Copper Wire Braid
Tinned Copper Wire Braid
Description Tinned Copper Wire Braid used for the flexible conductor of electric installation,switch gear,electric frunace,storage battery,etc. Tinned Copper Wi
Tinned Copper Tape
Tinned Copper Tape
The complete range of Earth Tapes manufactured from high conductivity tinned copper by Qingzhou in an extensive range of widths and thicknesses from 12.5 x 1.5mm (18.75sqmm C.S.A. Cross Section Area) to 50 x 8mm (400sqmm C.S.A.) .
Bare copper strand wire
Bare Copper Stranded Conductor(bcc)
Bare Copper Conductor ( BCC )